Predicting Sleep Quality in Osteoporosis Patients Using Electronic Health Records and Heart Rate Variability
Document Type
Article
Publication Date
7-1-2020
Identifier/URL
136361488 (Orcid)
Find this in a Library
Abstract
Sleep quality (SQ) is one of the most well-known factors in daily work performance. Sleep is usually analyzed using polysomnography (PSG) by attaching electrodes to the bodies of participants, which is likely sleep destructive. As a result, investigating SQ using a more easy-to-use and cost-effective methodology is currently a hot topic. To avoid overfitting concerns, one likely methodology for predicting SQ can be achieved by reducing the number of utilized signals. In this paper, we propose three methodologies based on electronic health records and heart rate variability (HRV). To evaluate the performance of the proposed methods, several experiments have been conducted using the Osteoporotic Fractures in Men (MrOS) sleep dataset. The experimental results reveal that a deep neural network methodology can achieve an accuracy of 0.6 in predicting light, medium, and deep SQ using only ECG signals recorded during PSG. This outcome demonstrates the capability of using HRV features, which are effortlessly measurable by easy-to-use and cost-effective wearable devices, in predicting SQ.
Repository Citation
Sadeghi, R.,
Banerjee, T.,
& Hughes, J.
(2020). Predicting Sleep Quality in Osteoporosis Patients Using Electronic Health Records and Heart Rate Variability. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020, 5571-5574.
https://corescholar.libraries.wright.edu/cse/646
DOI
10.1109/EMBC44109.2020.9175629